
Mach Learn () :
DOI 10.1007/s10994-006-6226-1

Extremely randomized trees

Pierre Geurts · Damien Ernst · Louis Wehenkel

Received: 14 June 2005 / Revised: 29 October 2005 / Accepted: 15 November 2005 /
Published online: 2 March 2006
Springer Science + Business Media, Inc. 2006

Abstract This paper proposes a new tree-based ensemble method for supervised classifica-
tion and regression problems. It essentially consists of randomizing strongly both attribute
and cut-point choice while splitting a tree node. In the extreme case, it builds totally random-
ized trees whose structures are independent of the output values of the learning sample. The
strength of the randomization can be tuned to problem specifics by the appropriate choice
of a parameter. We evaluate the robustness of the default choice of this parameter, and we
also provide insight on how to adjust it in particular situations. Besides accuracy, the main
strength of the resulting algorithm is computational efficiency. A bias/variance analysis of the
Extra-Trees algorithm is also provided as well as a geometrical and a kernel characterization
of the models induced.

Keywords Supervised learning . Decision and regression trees . Ensemble methods .

Cut-point randomization . Bias/variance tradeoff . Kernel-based models

1. Introduction

In this article, we propose a new tree induction algorithm that selects splits, both attribute
and cut-point, totally or partially at random.

The idea that randomized decision trees could perform as well as classical ones appeared
in an experimental study published in the late eighties (Mingers, 1989), even if later it was

Editor: Johannes Fürnkranz

P. Geurts (�) · D. Ernst · L. Wehenkel
Department of Electrical Engineering and Computer Science, University of Liège,
Liège, Sart-Tilman, B-28, B-4000 Belgium
e-mail: P.Geurts@ulg.ac.be

D. Ernst
e-mail: Dernst@ulg.ac.be

L. Wehenkel
e-mail: L.Wehenkel@ulg.ac.be

Mach Learn () :

shown in a more carefully designed experiment that they were actually significantly less
accurate than normal ones on many datasets (Buntine and Niblett, 1992).

During the early nineties, the statistical notions of variance and its companion, the
bias, were studied more systematically by machine learning researchers (see for example,
Dietterich and Kong, 1995; Breiman, 1996a; Friedman, 1997), and the high variance of
tree-based models, like those induced by CART or C4.5, was acknowledged by the research
community. Actually, because of this high variance, the models induced by these latter
methods are to a large extent random, and also the splits, both attributes and cut-points, that
are chosen at each internal node depend to a very large extent on the random nature of the
learning sample (Wehenkel, 1997; Geurts and Wehenkel, 2000; Geurts, 2002). In particular,
in (Wehenkel, 1997) it was shown empirically that the cut-point variance is very high, even
for large sample sizes. More precisely, the optimal cut-point (the one maximizing, for a
given problem and a given attribute, the score computed on the learning sample) was shown
to depend very strongly on the particular learning sample used. Furthermore, this cut-point
variance appeared to be responsible for a significant part of the error rates of tree-based
methods (see, e.g., Geurts, 2002). Thus, in order to try to reduce cut-point variance, various
kinds of cut-point smoothing or averaging approaches have been tried out, but, while allowing
to reduce cut-point variance and hence improve interpretability, they did not translate into
significantly better predictive accuracy (Geurts and Wehenkel, 2000).

During the same early nineties period, various ideas to combine multiple models emerged
with the objective of reducing variance or bias in machine learning methods. For example,
Bayesian averaging (Buntine and Weigend, 1991; Buntine, 1992) is essentially a variance
reduction technique, whereas Stacking and Boosting (Wolpert, 1992; Freund and Schapire,
1995) essentially target a reduction of bias (actually, Boosting also reduces variance; Bauer
and Kohavi, 1999). Breiman came up in 1994 with the “Bagging” idea (Breiman, 1996b) in
order to reduce the variance of a learning algorithm without increasing its bias too much.
One can view Bagging as a particular instance of a broader family of ensemble methods
that we will call randomization methods. These methods explicitly introduce randomization
into the learning algorithm and/or exploit at each run a different randomized version of the
original learning sample, so as to produce an ensemble of more or less strongly diversified
models. Then, the predictions of these models are aggregated by a simple average or a
majority vote in the case of classification. For example, Bagging introduces randomization
by building the models from bootstrap samples drawn with replacement from the original
dataset. Several other generic randomization methods have been proposed which, like Bag-
ging, are applicable to any machine learning algorithm (e.g., Ho, 1998; Bauer and Kohavi,
1999; Webb, 2000; Breiman, 2000a). These generic methods often improve considerably
the accuracy of decision or regression trees which, otherwise, are often not competitive with
other supervised learning algorithms like neural networks or support vector machines. Fur-
thermore, although ensemble methods require growing several models, their combination
with decision/regression trees remains also very attractive in terms of computational effi-
ciency because of the low computational cost of the standard tree growing algorithm. Hence,
given the success of generic ensemble methods with trees, several researchers have looked at
specific randomization techniques for trees based on a direct randomization of the tree grow-
ing method (e.g., Ali and Pazzani, 1996; Ho, 1998; Dietterich, 2000; Breiman, 2001; Cutler
and Guohua, 2001; Geurts, 2002; Kamath et al., 2002). All these randomization methods
actually cause perturbations in the induced models by modifying the algorithm responsible
for the search of the optimal split during tree growing. In the context of an ensemble method,
it is thus productive to somewhat deteriorate the “optimality” of the classical deterministic
induction algorithm that looks for the best split locally at each tree node.

Mach Learn () :

Although existing randomization methods for trees significantly randomize the standard
tree growing algorithm, they are still far from building totally random trees. Yet, the very
high variance of decision and regression tree splits suggests investigating whether higher
randomization levels could improve accuracy with respect to existing ensemble methods. To
this end, the present paper proposes and studies a new algorithm that, for a given numerical
attribute, selects its cut-point fully at random, i.e., independently of the target variable. At
each tree node, this is combined with a random choice of a certain number of attributes
among which the best one is determined. In the extreme case, the method randomly picks a
single attribute and cut-point at each node, and hence builds totally randomized trees whose
structures are independent of the target variable values of the learning sample. While we
also propose a way to select random splits for categorical attributes, we focus in this paper
on the study of this randomization idea in the context of numerical attributes only.

The rest of the paper is organized as follows: Section 2 introduces the Extra-Trees (for
extremely randomized trees) algorithm with its default parameter settings, and carries out a
systematic empirical evaluation in terms of both accuracy and computational efficiency; Sec-
tion 3 provides a detailed analysis of the effect of parameters in different conditions. Section 4
presents an empirical study of bias and variance of the Extra-Trees algorithm and
Section 5 analyses the main geometrical properties of the Extra-Trees models. The pa-
per ends with a discussion of related work, conclusions and suggestions for future
work directions. The appendices collect relevant details and complementary simulations
results.

2. Extra-Trees algorithm

We consider the standard batch-mode supervised learning problem, and focus on learning
problems characterized by (possibly a large number of) numerical input variables and one
single (categorical or numerical) target variable. We start with the description of the Extra-
Trees (ET) algorithm and a brief discussion of its rationale. We continue with a systematic
empirical evaluation based on a diverse set of classification and regression problems, where
we compare this new method with standard tree-based methods, in terms of both accuracy
and computational efficiency.

In the rest of the paper, the term attribute denotes a particular input variable used in a
supervised learning problem. The candidate attributes denote all input variables that are
available for a given problem. We use the term output to refer to the target variable that
defines the supervised learning problem. When the output is categorical, we talk about a
classification problem and when it is numerical, we talk about a regression problem. The
term learning sample denotes the observations used to build a model, and the term test
sample the observations used to compute its accuracy (error-rate, or mean square-error).
N refers to the size of the learning sample, i.e., its number of observations, and n refers to
the number of candidate attributes, i.e., the dimensionality of the input space.

2.1. Algorithm description and rationale

The Extra-Trees algorithm builds an ensemble of unpruned decision or regression trees
according to the classical top-down procedure. Its two main differences with other tree-
based ensemble methods are that it splits nodes by choosing cut-points fully at random and
that it uses the whole learning sample (rather than a bootstrap replica) to grow the trees.

Mach Learn () :

Table 1 Extra-Trees splitting algorithm (for numerical attributes)

Split a node(S)
Input: the local learning subset S corresponding to the node we want to split
Output: a split [a < ac] or nothing
– If Stop split(S) is TRUE then return nothing.
– Otherwise select K attributes {a1, . . . , aK } among all non constant (in S) candidate attributes;
– Draw K splits {s1, . . . , sK }, where si = Pick a random split(S, ai), ∀i = 1, . . . , K ;
– Return a split s∗ such that Score(s∗, S) = maxi=1,...,K Score(si , S).

Pick a random split(S,a)
Inputs: a subset S and an attribute a
Output: a split
– Let aS

max and aS
min denote the maximal and minimal value of a in S;

– Draw a random cut-point ac uniformly in [aS
min, aS

max];
– Return the split [a < ac].

Stop split(S)
Input: a subset S
Output: a boolean
– If |S| < nmin, then return TRUE;
– If all attributes are constant in S, then return TRUE;
– If the output is constant in S, then return TRUE;
– Otherwise, return FALSE.

The Extra-Trees splitting procedure for numerical attributes is given in Table 1.1 It has
two parameters: K, the number of attributes randomly selected at each node and nmin , the
minimum sample size for splitting a node. It is used several times with the (full) original
learning sample to generate an ensemble model (we denote by M the number of trees of
this ensemble). The predictions of the trees are aggregated to yield the final prediction, by
majority vote in classification problems and arithmetic average in regression problems.

From the bias-variance point of view, the rationale behind the Extra-Trees method is that
the explicit randomization of the cut-point and attribute combined with ensemble averaging
should be able to reduce variance more strongly than the weaker randomization schemes
used by other methods. The usage of the full original learning sample rather than bootstrap
replicas is motivated in order to minimize bias. From the computational point of view, the
complexity of the tree growing procedure is, assuming balanced trees, on the order of N log
N with respect to learning sample size, like most other tree growing procedures. However,
given the simplicity of the node splitting procedure we expect the constant factor to be much
smaller than in other ensemble based methods which locally optimize cut-points.

The parameters K, nmin and M have different effects: K determines the strength of the
attribute selection process, nmin the strength of averaging output noise, and M the strength
of the variance reduction of the ensemble model aggregation. These parameters could be
adapted to the problem specifics in a manual or an automatic way (e.g. by cross-validation).
However, we prefer to use default settings for them in order to maximize the computational
advantages and autonomy of the method. Section 3 studies these default settings in terms of
robustness and suboptimality in various contexts.

1 The complete Extra-Trees algorithm, for numerical and categorical attributes, is given in Appendix A.

Mach Learn () :

To specify the value of the main parameter K, we will use the notation ETK , where K is
replaced by ‘d’ to say that default settings are used, by ‘∗’ to denote the best results obtained
over the range of possible values of K, and by ‘cv’ if K is adjusted by cross-validation.

2.2. Empirical evaluation

We now present an empirical evaluation of the performance of the Extra-Trees method with
default settings. We first describe the datasets used for this purpose and discuss the range of
conditions that are intended to be covered by them. Then we specify the algorithms (all are
tree-based) with which we compare our method and the simulation protocol used to evaluate
them. Finally, we provide and discuss the results in terms of accuracy and computational
requirements.

2.2.1. Datasets

We have used 24 different datasets. Half of them concern classification problems, with a
number of classes ranging from 2 to 26; the other half are regression problems. Overall,
these datasets cover a wide range of conditions in terms of number of candidate attributes
(between 2 and 617), learning sample size (between 300 and 10,000), observation redundancy
(number N/n of observations per attribute between 10 and 1000). In terms of the relative
importance of candidate attributes, we have datasets with a number of totally irrelevant
variables, with equally important variables and with attributes of variable importance. In
terms of problem complexity, we cover linear problems as well as strongly non-linear ones.
Some problems present high noise, others are noise free. All datasets are well known and
publicly available. Out of the 24 problems, 13 are synthetic ones, and for three of them
the explicit form of the Bayes optimal model and its residual error are known. Notice that
we have restricted our choice to datasets which originally had no missing values and only
numerical attributes.2 The choice of datasets was made a priori and independently of the
results obtained with our methods, and no dataset was later excluded.

Appendix B provides further details concerning these datasets, in particular their size and
numbers of candidate attributes and classes, and a brief discussion of their origins and results
obtained by standard methods such as k-nearest neighbors (kNN) and linear models.

2.2.2. Compared algorithms

Below, the compared methods are given in the order of their publication. Except for the first
one, they all build ensembles of trees.

2.2.2.1. Single CART Tree (ST/PST). We use the CART algorithm to build single trees
(Breiman et al., 1984). Trees are grown in a deterministic way from the learning sample and
pruned according to the cost-complexity pruning algorithm with error estimates by ten-fold
cross-validation. We will use the acronym ST (respectively, PST) to denote unpruned single
trees (respectively, pruned single trees).

2.2.2.2. Tree Bagging (TB). When talking about Tree Bagging we refer to the standard
algorithm published by Breiman (1996b). In this algorithm, unpruned CART trees are grown

2 See also (Geurts et al., 2005a) for results with categorical attributes.

Mach Learn () :

from bootstrap replicas (obtained by N times random sampling with replacement in the
original learning sample). In Tree Bagging, attribute and cut-point randomization is thus
carried out implicitly (and in a parameter free way) via the bootstrap re-sampling.

2.2.2.3. (Local) Random Subspace (RS). We consider the variant where this method random-
izes locally the set of attributes used to determine an optimal split at each tree node (Ho,
1998). To this end, it looks for the best split over a subset of attributes, selected locally at
each test node by drawing without replacement a number K of attributes from the candidate
attributes. The trees are built from the original learning sample and the cut-point for a given
attribute is optimized node-wise. The strength of the randomization is inversely proportional
to the parameter K. We use the notation RSK to denote this method, with K = ∗ to denote
the best result found over the range of values of K = 1, . . . , n.

2.2.2.4. Random Forests (RF). This algorithm has been proposed by Breiman (2001) as an
enhancement of Tree Bagging. To build a tree it uses a bootstrap replica of the learning sample,
and the CART algorithm (without pruning) together with the modification used in the Random
Subspace method. At each test node the optimal split is derived by searching a random
subset of size K of candidate attributes (selected without replacement from the candidate
attributes). Empirical studies have shown that Random Forests significantly outperform Tree
Bagging and other random tree ensemble methods in terms of accuracy. In terms of degree of
randomization, this algorithm is stronger than Tree Bagging, specially if K is small compared
to the number of attributes, n. It is also stronger than Random Subspace since it combines this
method with bootstrap sampling. Randomization is both implicit (attribute and cut-point)
and explicit (attribute). We use the notation RFK , with K = d for the default setting, and
K = ∗ for the best result over the range K = 1, . . . , n.

2.2.2.5. Parameter choices. Except for CART, all algorithms have the common parameter
M (number of trees of the ensemble). We use for this parameter the common value of
M = 100, which is large enough to ensure convergence of the ensemble effect with all our
datasets. Another common parameter of the ensemble methods is nmin , which we set to 2 for
classification (fully grown trees) and to 5 in regression (slight smoothing). Finally, Random
Subspace, Random Forests and Extra-Trees have the common parameter K. For our method
and unless otherwise specified, we use the default setting in all trials, which is K = √

n in
classification, rounded to the closest integer, and K = n in regression. This choice is denoted
by ETd and further discussed in Section 3.1. For the purpose of accuracy assessments, we did
run Random Subspace and Random Forests systematically with K ranging from 1 to n, and
we report the best results obtained (i.e., RS∗ and RF∗). For the computational assessment,
we did however run Random Forests with the same default K (denoted by RFd) as our
method, so as to put these methods in comparable conditions from the computational point
of view.

2.2.2.6. Score measures. We use the same score measure for all methods. In regression this
is the amount of output variance reduction and in classification it is a normalized version of
the Shannon information gain. Detailed score formulas are given in Appendix A.

2.2.2.7. Aggregation scheme. For all ensemble methods we used majority vote for classifi-
cation problems and arithmetic average for regression problems.

Mach Learn () :

Table 2 Win/Draw/Loss records (corrected t-tests) comparing the algorithm in the column versus the
algorithm in the row

Classification problems Regression problems

PST TB RS∗ RF∗ ETd PST TB RS∗ RF∗ ETd

PST – 8/4/0 11/1/0 11/1/0 10/2/0 – 10/2/0 8/4/0 10/2/0 10/2/0
TB 0/4/8 – 7/5/0 7/5/0 7/5/0 0/2/10 – 0/9/3 1/11/0 4/8/0
RS∗ 0/1/11 0/5/7 – 0/8/4 2/10/0 0/4/8 3/9/0 – 4/8/0 4/7/1
RF∗ 0/1/11 0/5/7 4/8/0 – 5/7/0 0/2/10 0/11/1 0/8/4 – 3/7/2
ETd 0/2/10 0/5/7 0/10/2 0/7/5 – 0/2/10 0/8/4 1/7/4 2/7/3 –

2.2.3. Protocols

The algorithms are run ten times on each dataset, except for smaller datasets where they are
run 50 times (these are marked by a star in Table 7, Appendix B). At each run, each dataset
is first randomly divided into a learning (LS) and test (TS) sample (their respective sizes are
given in Table 7). Then all algorithms are run on the learning sample and their errors are
estimated on the test sample. We report and analyze the average and standard deviations of
the errors of each method obtained in this way on each dataset. In classification problems
these numbers refer to error rates in percent, whereas in regression problems they refer to
mean square-errors, multiplied by the factor given in the last column of Table 7 (these factors
are inversely proportional to the order of magnitude of the errors). These results are reported
graphically on Fig. 1. Each individual graph shows, for a particular problem, in left to right
order the accuracies of the five methods, with the pruned CART trees (PST) on the far left
and the Extra-Trees with default settings (ETd) on the far right. We recall that the Random
Subspace and Random Forests results correspond to the best value of K and are therefore
denoted by RS∗ and RF∗.

All the numerical values are collected in Table 8 of Appendix D, with results obtained by
other variants, the kNN method, and least squares linear regression.

We have also performed statistical tests to compare the different algorithms. For this
purpose, we used a corrected paired two-sided t-test with a confidence level of 95% (see
Appendix C). Table 2 reports on the “Win-Draw-Loss” statuses of all pairs of methods.

2.2.4. Discussion of results

Although this is difficult to assess from Fig. 1, let us first notice that for each problem the
standard deviations of the errors of the last three methods (RS∗, RF∗, ETd) are very close
to each other and are significantly smaller than those of PST (50% on average). For Tree
Bagging, on the other hand, these standard deviations are on classification problems close to
those of PST, while on regression problems they are close to the other three methods.

Concerning average accuracies, Fig. 1 highlights that on a very large majority of problems
Extra-Trees are as accurate or more accurate than the other ensemble methods. Among
these other methods, Tree Bagging is less convincing on classification problems, while on
regression problems it appears to be equivalent with the Random Forests. On regression
problems, the Random Subspace method is occasionally significantly worse than the other
ensemble methods (on the two Hwang problems, and a little less on Pumadyn-32nm). Only
on Vehicle and Housing, Extra-Trees are visibly (slightly) less accurate than some other
ensemble methods and, overall, they work very reliably. Finally, we note that all ensemble

Mach Learn () :

Fig. 1 Comparison (average error and standard deviation) on 12 classification and 12 regression problems.

methods are better (generally very much) than the single pruned CART trees. Indeed, this
latter method is competitive only on Pumadyn-32fh. Notice that the results are sometimes
slightly worse and sometimes slightly better for unpruned single CART trees (see Table 8,
Appendix D).

Considering the significance tests of Table 2, we note that Extra-Trees never lose on clas-
sification problems, whereas Tree Bagging loses 7 times with respect to the other ensemble
methods, Random Subspace loses 2 times with respect to Extra-Trees, and Random Forests
loses 5 times with respect to Extra-Trees and 4 times with respect to Random Subspace. The
advantage of Extra-Trees is also valid on regression problems, although here it occasionally
loses (1 time with respect to Random Subspace and 2 times with respect to Random Forests).

To assess the effect of the default choice of the parameter K on these conclusions, we
did run a side experiment where the value of K was adjusted for each run of the Extra-Trees
method by using a 10-fold cross-validation technique internal to the learning sample. The
detailed numerical results are given in Table 8 (Appendix D) in the column denoted ETcv;

Mach Learn () :

significance tests show that 22 times out of 24 the ETcv variant performs the same as ETd,
and two times it wins (on the Segment and Isolet datasets, where slightly better results are
obtained for K values higher than the default setting). In terms of Win/Draw/Loss reports
with respect to the other methods, the ETcv variant also appears slightly better than ETd.
Finally, the comparison of the ETcv version with an ET∗ variant (see Table 8) shows that
there is no significant difference (24 draws on 24 datasets) between these two variants.

These results confirm that the conclusions in terms of accuracy would have been affected
only marginally in favor of the Extra-Trees algorithm if we had used the version which
adjusts K by cross-validation instead of the default settings. Given the very small gain in
accuracy with respect to the default setting and the very high cost in terms of computational
burden, we do not advocate the use of the cross-validation procedure together with the Extra-
Trees algorithm, except in very special circumstances where one can a priori foresee that the
default value would be suboptimal. These issues are further discussed in Section 3, together
with the analysis of the other two parameters of the method.

2.3. Computational requirements

We compare Extra-Trees with CART, Tree Bagging and Random Forests. In this comparison,
we have used unpruned CART trees.3 We also use the same default settings to run Random
Forests as for Extra-Trees (K = √

n or K = n), so as to put them in similar conditions from
the computational point of view. Notice that we dropped the Random Subspace method for
this comparison, since its computational requirements are systematically larger than those
of Random Forests under identical conditions.4

Tables 3 and 4 provide respectively tree complexities (number of leaves of a tree or of an
ensemble of trees) and CPU times (in msec)5 required by the tree growing phase, averaged
over the 10 or 50 runs for each dataset. We report in the left part of these tables results
for classification problems, and in the right part those for regression problems. Notice that,
because in regression the default value of K is equal to n, the Random Forests method
degenerates into Tree Bagging; so their results are merged in one column.

Regarding complexity, Table 3 shows that Extra-Trees are between 1.5 and 3 times larger
in terms of number of leaves than Random Forests. The average ratio is 2.69 over the
classification problems and 1.67 in regression problems. However, in terms of average tree
depth, this increase in complexity is much smaller due to the exponential growth of the
number of leaves with tree depth. Thus, Extra-Trees are on the average no more than two
levels deeper than those produced by Tree Bagging or Random Forests. For example in our
trials, the most complex trees were obtained on the Census-16H dataset, with an average
depth of 11 for Tree Bagging and 12 for Extra-Trees. Thus, from a practical point of view,
the increase in complexity is detrimental only in terms of memory requirements.

Regarding computing times, Table 4 shows that Extra-Trees training is systematically
faster than that of Random Forests and Tree Bagging. In classification problems, the average

3 Pruning by ten-fold cross-validation only slightly affects accuracy (see Table 8), but leads to learning times
about ten-times higher than for unpruned trees.
4 This is due to the fact that the only difference between these methods is that Random forests use bootstrap
replicas, which leads to smaller trees (about 30%) and faster tree growing and testing times. Note also that
bootstrap sampling could be combined with our Extra-Trees and lead to similar improvements. However, we
have found that it deteriorates accuracy, often significantly (see Appendix D).
5 The system is implemented in C under Linux and runs on a Pentium 4 2.4GHz with 1GB of main memory.
In our experiments, all data and models are stored in main memory.

Mach Learn () :

Table 3 Model complexities (total number of leaves, ensembles of M = 100 trees)

Classification problems Regression problems
Dataset ST TB RFd ETd Dataset ST TB/RFd ETd

Waveform 38 2661 3554 10782 Friedman1 118 7412 11756
Two-Norm 26 1860 2519 7885 Housing 180 11590 18831
Ring-Norm 23 1666 2237 7823 Hwang-f5 773 48720 78438
Vehicle 123 8880 11699 29812 Hwang-f5n 829 51683 79524
Vowel 127 10505 13832 33769 Pumadyn-32fh 755 48043 78503
Segment 62 5083 8071 24051 Pumadyn-32nm 754 47794 78022
Spambase 202 14843 21174 51155 Abalone 1189 76533 129016
Satellite 371 26571 34443 83659 Ailerons 1786 116242 205939
Pendigits 248 19783 29244 76698 Elevators 1946 124346 208356
Dig44 823 59999 81110 239124 Poletelecomm 434 29488 57342
Letter 1385 104652 144593 278984 Bank-32nh 1313 83385 139866
Isolet 171 12593 21072 48959 Census-16H 2944 187543 320074

ratio over the twelve datasets is 0.36 in favor of Extra-Trees with respect to Random Forests,
and they are on the average 10 times faster than Tree Bagging. In regression problems, the
average ratio is 0.81 (with respect to both methods).

Notice that our implementations of Tree Bagging and Random Forests pre-sort the learning
sample before growing all trees to avoid having to re-sort it each time a node is split. On our
problems, this pre-sorting reduced the average computing times of these methods by a factor
two. Our implementation of Extra-Trees, on the other hand, does not use pre-sorting, which
is a further advantage in the case of very large problems, where it may not be possible to
keep in memory a sorted copy of the learning sample for each candidate attribute. Actually,
strictly speaking, since pre-sorting requires on the order of nNlog N operations, it makes the
computational complexity of Random Forests depend linearly on the number of attributes,
even when K = √

n. Hence, for very large numbers of attributes the computational advantage
of Extra-Trees is even higher. This is observed on the largest dataset (Isolet), where they are
more than ten times faster than Random Forests.

Table 4 Computing times (msec) of training (ensembles of M = 100 trees)

Classification problems Regression problems
Dataset ST TB RFd ETd Dataset ST TB/RFd ETd

Waveform 68 4022 1106 277 Friedman1 7 372 284
Two-Norm 66 3680 830 196 Housing 12 685 601
Ring-Norm 101 4977 1219 251 Hwang-f5 16 917 742
Vehicle 80 5126 1500 685 Hwang-f5n 15 948 748
Vowel 236 14445 4904 694 Pumadyn-32fh 251 13734 9046
Segment 291 18793 5099 1053 Pumadyn-32nm 221 11850 9318
Spambase 822 55604 9887 8484 Abalone 73 4237 3961
Satellite 687 45096 11035 5021 Ailerons 495 29677 26572
Pendigits 516 34449 12080 5183 Elevators 289 15958 13289
Dig44 4111 259776 67286 9494 Poletelecomm 497 28342 26576
Letter 665 44222 17041 14923 Bank-32nh 613 34402 20178
Isolet 37706 2201246 126480 11469 Census-16H 597 35207 27900

Mach Learn () :

3. On the effect of parameters

This section analyzes and discusses the effect of the three parameters K, nmin and M on the
Extra-Trees.

3.1. Attribute selection strength K

The parameter K denotes the number of random splits screened at each node to develop
Extra-Trees. It may be chosen in the interval [1, . . . , n], where n is the number of attributes.
For a given problem, the smaller K is, the stronger the randomization of the trees and the
weaker the dependence of their structure on the output values of the learning sample. In the
extreme, for K = 1, the splits (attributes and cut-points) are chosen in a totally independent
way of the output variable (we therefore use the term totally randomized trees to denote this
variant). On the other extreme, when K = n, the attribute choice is not explicitly randomized
anymore, and the randomization effect acts only through the choice of cut-points.

In order to see how this parameter influences accuracy, and to support our default settings,
we have made a systematic experience for all our datasets, by varying the parameter over its
range. Figure 2 shows the evolution of the error of Extra-Trees with respect to the value of K,
top on classification problems, bottom on regression problems. For classification problems,
the default value of K = √

n is shown as a vertical line on the graphs; for regression the
default corresponds to the highest possible value of K (i.e. K = n).

Let us first discuss the results for classification problems, given in the upper part of
Fig. 2. We see that there are three types of trends: monotonically decreasing (Vehicle,
Satellite, Pendigits), monotonically increasing (only Two-Norm), decreasing followed by
increasing (the other 8 problems). For the first two categories, the default setting k = √

n, is
obviously suboptimal.

Actually, the analysis of the Two-Norm problem leads to better understanding of the
method. This problem is characterized by strong symmetry over the attributes, and its Bayes
optimal decision surface is linear and invariant with respect to permutations of the attributes.
This invariance is also obtained in the Extra-Trees (approximately for small values of M,
and exactly for very large values of M) provided that we use K = 1. As soon as K > 1, the
method starts fitting the attribute choices to the learning sample, which increases variance
(without affecting bias) and hence error rates. We can generalize this finding by saying that
problem symmetries should be reflected by the splitting procedure because this allows to
reduce variance without increasing bias.

We conjecture that a high percentage of irrelevant variables yields the opposite behavior,
namely a monotonic decrease of the error rate with increasing K. Clearly, in such situations
using a higher value of K leads to a better chance of filtering out the irrelevant variables, which
then leads to a significant reduction of bias over-compensating the increase of variance. In the
more generic intermediate situations, where attributes are of variable importance, we obtain
the non-monotonic behavior. In this case the default setting of K does generally a good job.
To check this hypothesis, we carried out an experiment introducing irrelevant variables on
the Two-Norm and Ring-Norm problems. Figure 3 compares on these problems the original
trajectory of the error with K with the same curve obtained when we add as many irrelevant
attributes as original attributes.6 We see that on the Two-Norm problem the loss of symmetry

6 The irrelevant attribute values were drawn from N(0,1) distributions.

Mach Learn () :

Fig. 2 Evolution of the error of Extra-Trees with K, on 12 classification and 12 regression problems.

Fig. 3 Effect of irrelevant attributes on the evolution of the error of Extra-Trees with K.

Mach Learn () :

Fig. 4 Evolution of the error of ETd with nmin for different levels of output noise.

indeed leads to the loss of monotonicity. On the other hand, the optimal value of K increases
from 4 to 7 on the Ring-Norm problem, while the default value (

√
n, rounded) increases

from 4 to 6.
Considering the results shown for the regression problems in Fig. 2, we find that with

the exception of Abalone, the behavior is monotonically decreasing, which justifies the
default setting of K = n on these problems. Abalone is a rather un-typical regression prob-
lem, since its output is discrete (integer valued). Note that if we had treated this prob-
lem as a classification problem, we would have used the default value of K = �√8� = 3,
which is also the optimal value found when it is treated as a regression problem (see
Fig. 2).

3.2. Smoothing strength nmin

The second parameter of the Extra-Trees method is the number nmin of samples required
for splitting a node. Larger values of nmin lead to smaller trees, higher bias and smaller
variance, and its optimal value hence depends in principle on the level of output noise in
the dataset. To assess the robustness of its default values, we have tried out different ones
on all 24 datasets. This did not yield a significant improvement on any classification prob-
lem7, while on two regression problems, nmin = 2 was better than the default of 5: on
Hwang-f5, which is deterministic by construction, the error decreases from 1.62 to 1.13,
and on Housing it decreases from 9.68 to 9.09. Conversely, on two other regression prob-
lems stronger smoothing was better: using nmin = 10 decreased the error on Hwang-f5n
(the noisy version of this problem) from 7.50 to 7.15 and on Abalone from 4.69 to 4.56.
Therefore, although possibly slightly suboptimal, the default values of nmin = 2 (classifi-
cation) and nmin = 5 (regression) appear to be robust choices in a broad range of typical
conditions.

Clearly, in very noisy problems, ensembles of fully grown trees will over-fit the data. In
order to highlight this in the context of Extra-Trees, we report an experiment, where we have
added noise on the output values in the training set, and used ETd with increasing values
of nmin. The results obtained for Hwang-f5 (an originally noise-free regression problem)
and for Letter (classification) are shown in Fig. 4, where in addition to the curve corre-
sponding to the original dataset, we show for each problem two curves where additional

7 According to the corrected t-test with a significance level of 95%.

Mach Learn () :

noise was superposed on the output variable: for the classification problem, we have ran-
domly flipped the class of learning samples (respectively in 10% and 20% of the cases) and,
for the regression problem, we have superposed Gaussian noise (with a standard deviation
respectively of 50% and 100% of that of the output variable), while errors are computed
using the original test samples (i.e. without additional noise). These results clearly illus-
trate that the noisier the output, the higher the optimal value of nmin , and they also show
the robustness of the method to high noise conditions, provided that the value of nmin is
increased.

Similar experiments with the other datasets confirm this analysis, and show that the
default values of nmin are often robust with respect to a moderate increase in the output
noise. On the other hand, we note that from a purely theoretical point of view, one could
ensure consistency (i.e., convergence to the Bayes optimal model with increasing values of
sample size N) of the Extra-Trees by letting nmin grow slowly with N (e.g., nmin ∝ √

N). In
this respect, Extra-Trees are not different from other tree-based methods and the proofs of
consistency given in (Breiman et al., 1984) still hold.

3.3. Averaging strength M

The parameter M denotes the number of trees in the ensemble. It is well known that for ran-
domization methods the behavior of prediction error is a monotonically decreasing function
of M (see, e.g., Breiman, 2001). So in principle, the higher the value of M, the better from
the accuracy point of view. The choice of an appropriate value will thus essentially depend
on the resulting compromise between computational requirements and accuracy. Different
randomization methods may have different convergence profiles on different problems, de-
pending also on the sample size and other parameter settings (e.g., K and nmin). So not much
more can be said in general about this value.

For the sake of illustration, the top of Fig. 5 shows on a classification and on a regression
problem the evolution of the error when increasing the number of trees. To better illustrate
the speed of convergence, the bottom of the same figure shows on the same problems the
evolution with M of the ratio between the error with M trees and the error with 100 trees. In
classification, we compare Bagging, Extra-Trees (with default setting and with K = 1), and
Random Forests (also with K = √

n). In regression, we compare Bagging, and Extra-Trees
with K = n and K = 1. The straight lines in the top of Fig. 5 represent the error of one single
pruned tree.

These curves are typical of what we observed on most problems. In classification, the
convergence of Extra-Trees with the default setting is slower than the convergence of Tree
Bagging and of Random Forests (to a lesser extent). However, Extra-Trees quickly outper-
forms these two methods. In regression, RFd degenerates into Tree Bagging and the speed
of convergence of this latter method is now indistinguishable from that of Extra-Trees with
default setting.

As concerns totally randomized trees (ET1), we note that their speed of convergence in
regression is comparable to that of the other ensemble methods. In classification, however,
they converge more slowly. On the considered problem, they outperform Tree Bagging only
after M = 40 models. This suggests that K has indeed an influence on the number of trees
that need to be aggregated to ensure convergence, but we found that this influence is notable
only for very small values of K and only for classification problems.

Mach Learn () :

Fig. 5 Top, evolution of the error with the number M of trees in the ensemble, bottom, evolution of the ratio
between the error for a given M and the error for 100 trees for the same method.

4. Bias/variance analysis

In this section, we analyse the bias/variance characteristics of the Extra-Trees algorithm and
compare them with those of the other tree-based methods. In order to make the paper self-
contained, Appendix E provides a theoretical analysis of the bias/variance decomposition
of randomization methods. Before turning to the simulation results, we summarize the main
findings of this analysis as follows:

– randomization increases bias and variance of individual trees, but may decrease their
variance with respect to the learning sample;

– the part of the variance due to randomization can be canceled out by averaging over a
sufficiently large ensemble of trees;

– overall, the bias/variance tradeoff is different in regression than in classification problems;
in particular, classification problems can tolerate high levels of bias of class probability
estimates without yielding high classification error rates.

4.1. Experiments and protocols

We have chosen three classification (Waveform, Two-Norm, Ring-Norm) and three re-
gression problems (Friedman1, Pumadyn-32nm, Census-16H) corresponding to the larger
datasets. To estimate bias and variance (see, e.g., Bauer and Kohavi, 1999), each dataset is
split into two samples: a pool sample (PS) and a test sample (TS). Then, 100 models are
learned from 100 learning samples (LS) randomly drawn (with replacement) from the pool.
Finally, bias, variance, and average errors are estimated on the test sample by means of these
100 models. The sample sizes used in our experiments are given in Table 5.

Mach Learn () :

Table 5 Sample sizes for
bias/variance analysis Dataset PS size TS size LS size

Waveform 4000 1000 300
Two-Norm 8000 2000 300
Ring-Norm 8000 2000 300

Friedman1 8000 2000 300
Pumadyn-32nm 6192 2000 300
Census-16H 15000 7784 2000

In regression, since the Bayes model is unknown on some problems in our experiments,
we call bias the sum of the true bias and the residual error. This sum represents the true error of
the average model. In the case of classification, we will provide bias/variance decompositions
of the average square-error of conditional class probability estimates, together with average
error-rates.

In order to ease the comparison with the other methods, we discuss in this section results for
the ET∗ and ET1 variants of Extra-Trees, rather than ETd. Notice, however, that on regression
problems ETd provides identical results with ET∗, while on classification problems it has a
slightly higher variance and lower bias.

4.2. Comparison of the different randomization methods

Figure 6 shows (on regression problems in the upper part and on classification problems in
the lower part) the bias/variance decomposition for different learning algorithms. Error, bias,
and variance are expressed in percent on classification problems and scaled according to the
factor of Table 7 on regression problems. We observe the following:

– The variance of single trees (ST) is very high with respect to their bias, the latter including
the residual error. All ensemble methods increase the bias and decrease the variance with
respect to single trees, as predicted by the analysis of Appendix E.

– Among ensemble methods, Extra-Trees (ET∗ and ET1) reduce most strongly variance, but
they do also increase more strongly the bias than the other ensemble methods. Overall, ET∗

Fig. 6 Bias/variance decomposition for different algorithms.

Mach Learn () :

provides the best tradeoff between bias and variance. Its variance reduction with respect to
ST is very impressive in all cases (95% on the average), while its bias increase is moderate
(21% on the average). We also observe that RS∗ has a lower bias than RF∗, which is due
to the fact that it uses the full learning sample rather than a bootstrap replica to build trees.

– Comparing the two ET variants, we observe on most problems that ET1 has smaller variance
and a higher bias than ET∗, and that the increase of bias of ET1 is more strongly marked
in regression. A notable exception is the Two-Norm problem where ET1 is identical with
ET∗, which confirms the analysis of Section 3.1 concerning the impact of the symmetric
nature of this problem on bias and variance.

– The strongest increase of the bias of ET1 is observed on Friedman1 and Pumadyn-32nm.
Actually, these two problems have a large proportion of irrelevant attributes (5 out of 10
on Friedman, 30 out of 32 on Pumadyn-32nm). The effect of removing them is analyzed
in Section 4.4.

– On classification problems, ET∗ provides the best results in terms of error rate, although
in terms of “bias+variance” of probability estimates it is sometimes inferior to RS∗ and/or
RF∗. Note that this remains true for the ETd variant.

– On all classification problems, ET1 provides smaller error rates than Tree Bagging, even
though its “bias+variance” in terms of class probability estimates is sometimes significantly
higher (on Ring-Norm, and to a lesser extent, on Waveform). This is due to the fact that
in classification problems higher bias of probability estimates does not necessarily imply
higher error rates, as discussed in Appendix E.

4.3. Bias/variance tradeoff with K

Figure 7 shows the evolution with K of bias and variance of the mean square-error of Extra-
Trees, left on the Friedman1 and right on the Waveform dataset. For the Waveform dataset,
we actually refer to the mean square-error of probability estimates. We observe that bias
monotonically decreases and variance increases when K increases, and that from this point
of view there is no qualitative difference between classification and regression problems.

In classification (Waveform), we see from the curve labeled “error rate” that the optimum
error rate corresponds to a much higher degree of randomization (i.e., a much smaller value
of K) than the optimum of the square-error of probability estimates. Notice that this effect is
also observed on other datasets, because the misclassification error is (intrinsically) more tol-
erant to an increase of bias than the regression error. One can therefore take better advantage
in classification from the decrease of variance resulting from a stronger tree randomization.

Fig. 7 Evolution of bias and variance with K, left on Friedman1, right on Waveform.

Mach Learn () :

Fig. 8 Bias/variance on regression problems with irrelevant attributes removed.

This explains why Extra-Trees and totally randomized trees (and also Random Forests) are
usually significantly better than Tree Bagging on classification problems while they are not
on regression problems (see detailed results in Table 8, Appendix D).

4.4. Totally randomized trees and irrelevant variables

While the decrease of variance brought by totally randomized trees is not surprising, we
would like to explain why bias increases so much on some problems. Since, with this method,
attributes are selected randomly without looking at their relationship with the output, if there
is a (locally or globally) irrelevant attribute, it will nevertheless be selected with the same
probability as a relevant one. By averaging, the effect of irrelevant attributes on the ensemble
prediction will be canceled, but this will have the side effect of increasing bias. Actually,
splitting on an irrelevant attribute is tantamount to randomly splitting the learning sample.
Thus, irrelevant attributes act virtually as a reduction of the sample size, which results in
increased bias and variance of individual trees. While the variance increase is compensated
by tree averaging, the increase in bias is not.8

This analysis is supported by the fact that the two regression problems that present
the highest increase in bias of ET1 (Friedman1 and Pumadyn-32nm) contain both a high
proportion of irrelevant attributes. Indeed, by construction (Friedman, 1991), Friedman1
contains five totally irrelevant attributes among the 10 and, in Pumadyn-32nm, 2 attributes
(out of 32) contain over 95% of the information about the output.9 Fig. 8 shows, for single
unpruned trees, Tree Bagging, and totally randomized trees, the effect of removing the
irrelevant attributes on bias and variance. We see that variance is mostly unaffected for
ensemble methods, while it is reduced for single trees. For all three methods bias is reduced,
but this occurs in a much stronger way for the totally randomized trees. For example, by
removing the irrelevant attributes from the Pumadyn-32nm problem, the bias of the ensemble
of 100 totally randomized trees has dropped from 82.44 to 9.83, while variance has increased
only slightly from 0.94 to 1.40. On the Friedman1 problem, bias drops from 12.52 to 6.25
and variance increases from 0.31 to 0.34.

8 For example, on the Pumadyn-32nm problem, the bias and variance of a single totally randomized tree are
respectively of 82.67 and 40.11, while for an ensemble of 100 such trees variance drops to 0.94 and bias
remains unchanged up to the first decimal. Similarly, on the Friedman1 dataset, the bias of a single totally
randomized tree is of 13.02 and variance is of 12.38, while for an ensemble of 100 such trees variance drops
to 0.31, and bias slightly decreases to 12.52.
9 This was found by computing attribute importance from a set of trees obtained by Tree Bagging. Attribute
importance was computed according to the algorithm described in (Hastie et al., 2001).

Mach Learn () :

Fig. 9 Bias/variance on classification problems with irrelevant attributes added.

On the three classification problems of Fig. 6 all attributes are important for determining
the output and, hence, the increase of bias of totally randomized trees is less important. To
further illustrate this behavior, we have reproduced the experiment of Section 3.1 where we
have added as many irrelevant attributes10 as original attributes on the three classification
problems. The results are shown on Fig. 9. We observe that with the irrelevant attributes, the
increase of bias of ET1 with respect to single trees is much more important. Note also that on
Two-Norm the totally randomized trees nevertheless remain competitive with Tree Bagging
in terms of error-rate, which is less strongly affected on this problem than the square-error
of class probabilities.

5. Model characterizations

To provide further insight, we analyze in this section the Extra-Trees algorithm in terms of
properties of the models it induces, from two different points of view. First, we provide a
geometrical characterization of the models output by the Extra-Trees algorithm. Then, we
show that these models can be considered as kernel-based models.

5.1. Geometrical point of view

To illustrate the geometrical properties of fully developed Extra-Trees (nmin = 2), we
show on Fig. 10 their models obtained for a simple one-dimensional noise-free regression
problem, together with those of Tree Bagging under identical conditions. The models are
obtained with a specific sample depicted on the figure, which was obtained by drawing
20 points uniformly in the unit interval. The figure shows also the true function behind this
sample. In the left part, it gives models for ensembles of M = 100 trees and in the right
part for M = 1000. These graphics illustrate the fact that Extra-Trees produce models which
appear to be piecewise linear in the limit of M→ ∞, and are much smoother than those of
Tree Bagging.

One can show that in general, for an n-dimensional input space and nmin ≥ 2, infinite
ensembles of Extra-Trees produce a continuous piecewise multi-linear approximation of the
sample. To make this explicit, let us consider a learning sample of size N

lsN = {(xi , yi) : i = 1, . . . , N },

10 Irrelevant attributes values are drawn from N(0, 1) distributions.

Mach Learn () :

Fig. 10 Tree Bagging, and fully developed Extra-Trees (nmin = 2) on a one-dimensional piecewise linear
problem (N = 20). Left with M = 100 trees, right with M = 1000 trees.

where each xi = (xi
1, . . . , xi

n) is an attribute vector of dimension n and yi is the corresponding
output value, and let us denote by

(x (1)
j , . . . , x (N)

j)

the sample values of the jth attribute taken by increasing order, and for notational simplicity
let us define

x (0)
j = −∞ and x (N+1)

j = +∞,∀ j = 1, . . . , n,

and denote, ∀(i1, . . . , in) ∈ {0, . . . , N }n , by I(i1,...,in)(x) the characteristic function of the
hyper-interval

[x (i1)
1 , x (i1+1)

1 [× · · · × [x (in)
n , x (in+1)

n [.

With these notations, one can show11 that an infinite ensemble of Extra-Trees provides an
approximation in the form of

ŷ(x) =
N∑

i1=0

· · ·
N∑

in=0

I(i1,...,in)(x)
∑

X⊂{x1,...,xn}
λX

(i1,...,in)

∏

x j ∈X

x j , (1)

where the real-valued parameters λX
(i1,...,in) depend on sample inputs xi and outputs yi as well

as on the parameters nmin and K of the method.
In the particular case of fully developed trees (nmin = 2) they are such that

ŷ(xi) = yi ,∀(xi , yi) ∈ ls, (2)

11 The proof is a straightforward adaptation of the proofs given in (Zhao, 2000). See Appendix F.

Mach Learn () :

and if the input space is one-dimensional (n = 1, and x = (x1)), the model degenerates into
a piecewise linear model

ŷ(x) =
N∑

i1=0

I(i1)(x)
∑

X⊂{x1}
λX

(i1)

∏

x j ∈X

x j =
N∑

i=0

I(i)(x1)(λ∅
i + λ

{x1}
i x1), (3)

where I(i)(x1) denotes the characteristic function of the interval [x (i)
1 , x (i+1)

1 [. The values of λ∅
i

and λ
{x1}
i may be derived directly from the N eqs. (2), N continuity constraints, and constraints

imposing a constant model over the intervals [x (i)
1 , x (i+1)

1] ,∀i ∈ {0, N }.
Extremely and totally randomized tree ensembles hence provide an interpolation of any

output variable which, for finite M is piecewise constant (and, hence non-smooth), and for
M→ ∞ becomes piecewise multi-linear and continuous. This is in contrast with other tree-
based ensemble methods whose models remain piecewise constant even for M→ ∞. From a
bias/variance viewpoint, the continuous nature of the model translates into smaller variance
and bias in the regions where the target function is smooth and hence leads to more accurate
models in such regions.

5.2. Kernel point of view

For the sake of simplicity, we now particularize our discussion to regression trees.12 Let us
denote by lsN = {(xi , yi) : i = 1, . . . , N } a learning sample of size N, by t a tree structure
derived from it comprising lt leaves, by lt,i(x) the characteristic function of the ith leaf of t,
by nt,i the number of learning samples such that lt,i(x) = 1, and by

lt (x) =
(

lt,1(x)√
nt,1

, . . . ,
lt,lt (x)√

nt,lt

)T

(4)

the vector of (normalized) characteristic functions of t. Then the model defined by the tree t
can be computed by the equation

ŷt (x) =
N∑

i=1

yi lT
t (xi)lt (x), (5)

which shows that tree-based models are kernel-based models, where the kernel

Kt (x, x ′) �= lT
t (x)lt (x

′) (6)

is the scalar product over a feature space defined by the (normalized) characteristic functions
of the leaf nodes of the tree. Furthermore, the kernel and model defined by an ensemble
T = {ti : i = 1, . . . , M} of M trees are straightforwardly obtained by

KT (x, x ′) = M−1
M∑

i=1

Kti (x, x ′), (7)

12 The extension to the estimation of conditional class-probabilities is obtained by considering it as the
regression of a vector of class-indicator variables.

Mach Learn () :

and

ŷT (x) = M−1
M∑

i=1

ŷti (x) =
N∑

i=1

yi KT (xi , x). (8)

Alternatively, we can construct a feature vector of
∑M

i=1 lti components by

lT (x) =
(

lT
t1 (x)√

M
, . . . ,

lT
tM

(x)√
M

)T

(9)

and compute the ensemble kernel by

KT (x, x ′) = lT
T (x)lT (x ′). (10)

The feature vector lt (x) induced by a single tree structure is sparse in the sense that, ∀x ∈ X
only one feature is different from zero. For an ensemble of M trees, the feature vector is also
sparse, in the sense that ∀x ∈ X only M features are non-zero.

In the particular case of ensembles of fully developed trees, we have lti = N ,∀i =
1, . . . , M and nti , j = 1,∀i = 1, . . . , M,∀ j = 1 . . . , N , and the ensemble feature space is
of dimensionality MN. In this case the tree ensemble interpolates the learning sample,
namely

ŷT (xi) = yi ,∀(xi , yi) ∈ ls. (11)

In general, with nmin ≥ 2, it provides a bounded approximation of the sample, namely

min
i

yi ≤ ŷT (x) ≤ max
i

yi ,∀x ∈ X. (12)

With totally randomized trees, the kernel KT (x, x ′) is independent of the output val-
ues yi of the learning sample. Hence, we can view an ensemble of totally randomized tree
structures as an ensemble of (randomized) metrics which allow one to interpolate or ap-
proximate output values from learning samples using their attribute values. It is clear that
these metrics are invariant with respect to linear transformations of the coordinate axes
(re-scaling).

For finite M, the ensemble kernel KT (x, x ′) is obviously piecewise constant. However,
the kernel corresponding to an infinite ensemble of Extra-Trees (M→ ∞) is continu-
ous and piecewise multi-linear with respect to both x and x′ (see Appendix F). Breiman
(2000b) shows, under the assumptions of uniform prior distribution P(x), infinite sample size
(N→ ∞), and infinite ensembles of totally randomized trees of fixed number l of leaves, that
the kernel is approximately given by13

KT (x, x ′) ≈ exp{−λ|x − x ′|1}, (13)

13 This exponential form, in apparent contradiction with the multi-linear piecewise form found earlier, is due
to the infinite sample size hypothesis which causes the number of hyper-intervals of (multi-)linearity to grow
to infinity and thus results in a non piecewise and nonlinear function.

Mach Learn () :

where |x − x′|1 denotes the city-block distance. In this expression λ denotes the “sharpness”
of the kernel and is defined by

λ = log l

n
, (14)

where n is the dimension of the input space. Notice that for balanced trees built from a finite
sample of size N, the number of leaves l is on the order of

N

nmin
,

which suggests that a high dimension of the input space has a very strong smoothing effect,
actually much stronger than a high value of nmin.

Along a slightly different line of reasoning, Lin and Jeon (2002) show that if the number
of samples nti , j in each terminal node of all trees is kept constant and equal to k as N → ∞,
then the number of samples which could influence the prediction of an ensemble of trees at
some point14 is on the order of

k(log N)(n−1). (15)

This implies, in good agreement with the results of (Breiman, 2000b), that the averaging
effect in ensembles of regression trees could grow exponentially faster with the number of
dimensions of the input space than with the number of samples k kept in the leaves. These
results may explain why for most of our high-dimensional (and sometimes very noisy)
regression problems, we could not improve accuracies when increasing the value of nmin.

The effect of increasing the value of K (attribute selection strength) in the Extra-Trees
method is to make the kernel become sharper along those input directions along which
the output variable varies more strongly and less sharp in the other directions, and hence
to reduce (locally or globally) the dimension of the space over which the kernel actually
operates. This may explain why in regression problems it is often better to use higher
values of K in favor of an implicit reduction of the input-space dimensionality, which
can reduce the over-smoothing effect of the curse of dimensionality in the presence of
irrelevant variables. In classification problems this effect is less marked because classification
problems are much more tolerant with respect to over-smoothed (biased) class probability
estimates.

6. Related work on randomized trees

Besides the Random Subspace method (Ho, 1998) and Random Forests (Breiman, 2001),
which have been used in this paper for comparison purposes, several other randomized tree
growing algorithms have been proposed in the context of ensemble methods. Although some
of them could be applied to regression problems as well, all these methods have only been
evaluated on classification problems.

For example, Ali (1995) perturbs the standard tree induction algorithm by replacing the
choice of the best test by the choice of a test at random among the best ones. If S∗ is the score

14 They call them the potential k nearest neighbors of this point.

Mach Learn () :

of the optimal test, a test is randomly selected, with a probability proportional to its score,
among the tests which have a score greater than (1− β)S∗, where β is some constant between
0 and 1. Dietterich (2000) proposes a similar approach that consists in randomly selecting a
test among the k best splits. Choosing β equal to 1 in Ali’s method or letting k increase to
infinity in Dietterich’s method, reduces these two algorithms to totally randomized trees.15

However, these authors did not study these extreme parameter values, nor the impact of these
parameters on accuracy. In (Ali, 1995) the value of β was set to 0.75 in all experiments and in
(Dietterich, 2000) the sole value of k = 20 was considered. The results shown in the present
paper suggest that these two methods could reach similar accuracy as Extra-Trees by tuning
appropriately their parameters. However, even in the case of strong randomization (β→ 1
or k→ ∞), these methods would require the score computation of all possible splits at each
test node, thus losing the computational advantages of Extra-Trees.

Zheng and Webb (1998)’s Stochastic Attribute Selection Committees (SASC) are close to
the Random Subspace method. At each node, the best test is searched among only a subset
of the candidate attributes where each attribute has a probability P of being selected in the
subset. P plays a similar role as K in the Random Subspace method and its value has been fixed
to 0.33. A study of bias and variance of this method and other boosting based algorithms
in (Webb and Zheng, 2004) shows that SASC works mainly by reducing the variance of
the standard decision tree method while bias remains mainly unaffected. Furthermore, the
combination of SASC with Wagging (a variant of Bagging) shows improvement with respect
to SASC alone, again because of a more important reduction of variance. This is consistent
with our experiments showing that randomization should be quite high in classification.

Kamath et al. (2002) randomize the tree induction method by discretizing continuous
attributes through histograms at each tree node, evaluating the score only of bin boundaries,
and then selecting a split point in some interval around the best bin boundary. In their
experiments, the number of bins was fixed at the square root of the local learning sample
size. However, when the number of bins in the histograms is equal to the local learning
sample size, this algorithm builds standard trees and when there is only one bin per attribute,
this algorithm is equivalent to Extra-Trees with K = n. The reduction of computing times
was also advanced as an argument in favor of this method with respect to other ensemble
methods like Tree Bagging that require to evaluate every possible split.

Cutler and Guohua (2001) propose an algorithm for classification problems that builds
almost totally randomized trees. To split each non-terminal node in their variant, two exam-
ples are first randomly selected from different classes in the local learning sample. Then, an
attribute is selected at random and the cut-point is randomly and uniformly drawn between
the values of this attribute for the two random examples. Like our Extra-Trees, the trees are
fully grown from the original learning sample so as to perfectly classify the learning sample.
For this reason, they are called perfect random trees, or PERT in short. This method was
compared to Bagging and Random Forests on several classification problems. It often gives
competitive results with these two methods and also comes with an important reduction in
computing times. Although PERT splits are not totally independent of the output, we believe
that this method is very close to our totally randomized trees on classification problems, both
in terms of accuracy and computing times. Note however that this randomization scheme
does not readily apply to regression problems.

In (Geurts, 2002) and (Geurts, 2003), we have proposed a randomized tree algorithm
that, at each test node, generates random tests (without replacement of the attribute) until

15 Not strictly for Ali’s method since a test is randomly drawn with a probability proportional to its score.

Mach Learn () :

finding one that realizes a score greater than some threshold. This score threshold plays
a very similar role as the parameter K of the algorithm proposed here. When the score
threshold is equal to 0, this method builds totally randomized trees and when it is equal to
the maximal score value, it is equivalent to Extra-Trees with K = n. A comparison between
these two methods does not show any significant differences in terms of accuracy. At first,
we thought that filtering bad tests with a score threshold would improve computing times
and also facilitate the choice of a default value for the parameter. However, we have found no
evidence over many experiments that this was indeed the case. We therefore prefer the variant
proposed here, for simplicity reasons, and because its computational complexity is more
predictable.

Besides the tree world, our analysis suggests a possible way to apply the idea of extreme
randomization to other algorithms. To design a good randomization method, we should be
able to build randomized models that are good on the learning sample to keep the bias low
and then aggregate several of these models to get a low variance. This idea is especially
interesting with trees because building a perfect tree on the learning sample is trivial and
very fast. However, there may be other kinds of models where the same idea could be applied.
Herbrich et al. (2001) have proposed an algorithm that may be interpreted as the application
of this idea to support vector machines; the algorithm consists in generating and aggregating
several perfect linear models in the extended input space. These models are obtained by using
a simple perceptron learning rule and by randomizing the order in which the learning cases
are presented to the algorithm. Like our Extra-Trees, the main advantage of this algorithm is
its computational efficiency with respect to the classical support vector machine approach.
The parallel between these two approaches is certainly worth being explored.

7. Conclusion

In this paper, we have proposed an extremely randomized tree growing algorithm that
combines the attribute randomization of Random Subspace with a totally random selection
of the cut-point. In addition to the number M of trees generated (a common parameter of
all ensemble methods), this method depends on one main parameter, called K, that controls
the strength of the attribute randomization, and on a secondary parameter, called nmin , that
controls the degree of smoothing. The analysis of the algorithm and the determination of
the optimal value of K on several test problem variants have shown that the value is in
principle dependent on problem specifics, in particular the proportion of irrelevant attributes.
Nevertheless, our empirical validations have shown that default values for K are near-optimal
on 22 out of 24 diverse datasets, and only slightly suboptimal on two of them. They result
also in competitive results with respect to state-of-the-art randomization methods, in terms
of accuracy and computational efficiency.

This empirical validation was completed by a bias/variance analysis of the Extra-Trees
algorithm and a geometrical and a kernel characterization of its models. The bias/variance
analysis has shown that Extra-Trees work by decreasing variance while at the same time
increasing bias. Once the randomization level is properly adjusted, the variance almost
vanishes while bias only slightly increases with respect to standard trees. When the ran-
domization is increased above the optimal level, variance decreases slightly while bias
increases often significantly. We have also shown that this bias increase was due to the fact
that over-randomization prevents the algorithm from detecting attributes of low relevance
and reduces the effective sample size when there are many such attributes. Furthermore,
we have highlighted the different nature of the bias/variance tradeoff in classification and

Mach Learn () :

regression problems, explaining why classification problems can take advantage of stronger
randomization.

The geometrical analysis has shown that Extra-Trees asymptotically produce continuous,
piecewise multi-linear functions. The resulting models are thus smoother than the piecewise
constant ones obtained with other ensemble methods which optimize the cut-points. This
potentially leads to better accuracy in regions of the input space where the target function
is indeed smooth. We have also shown that tree-based ensemble models can be written as
kernel-based models. In the case of totally randomized trees, the kernel is independent of
the output values and thus it defines a universal scale-invariant metric defined on the input
space that can be used to approximate any target function. When K increases, the kernel
is automatically adapted to the output values, its sharpness increasing in those directions
along which the target function varies more strongly. Theoretical results from the literature
furthermore suggest that the spreading of the kernel increases rapidly with the dimension of
the input space resulting in a strong smoothing effect in the high dimensional case.

Actually, this paper has come up with two new learning algorithms that have comple-
mentary features: Extra-Trees with the default setting and totally randomized trees. Both
methods are non parametric. The first one provides near optimal accuracy and good compu-
tational complexity, especially on classification problems. The second one, although not as
accurate as the first one, is trivial to implement, even faster, and the models it induces are
independent of the output variable, making of this algorithm a very interesting alternative to
the kNN algorithm. Both methods have already proven useful in a number of applications. In
particular, problems of very high dimensionality, like image classification problems (Marée
et al., 2004), mass-spectrometry datasets (Geurts et al., 2005b), or time-series classification
problems (Geurts and Wehenkel, 2005), make the Extra-Trees a first choice method due
to its attractive computational performances. Also, the fact that totally randomized trees
have a tree structure independent of the output variable has been exploited in the context
of reinforcement learning where it ensures the convergence of the reinforcement learning
algorithm and leads to a very efficient implementation (Ernst et al., 2005).

There remain several future work directions. First of all, while we have focused here on
numerical attributes, it is also very desirable to handle other types of attributes. For categorical
attributes, we propose to generate random (binary) splits by selecting a random subset of
their possible values. This approach has already been successfully used in order to treat
biological (genetic) sequence classification problems (Geurts et al., 2005a). However, more
systematic empirical studies have to be carried out, and also the analytical characterization
of the models obtained with such attributes still have to be explored and will certainly result
in interesting, and probably very different properties, especially in the context of categorical
attributes only.

Since bias is the dominant component of the error of Extra-Trees, future improvements of
randomization methods should focus on this part of the error. There exist several techniques
to reduce the bias. One simple technique in the context of trees could be to extend tree
tests to take into account several attributes. This idea was already applied with some success
in the context of Random Forests by Breiman (2001). On the other hand, since Boosting
is a method known to reduce bias, it could possibly be combined with our Extra-Trees
so as to reduce their bias (see Webb, 2000; Webb and Zheng, 2004, for a combination
of Boosting and different randomization methods). Stochastic Discrimination (Kleinberg,
1990) is another theoretical framework to transform a weak classification algorithm (i.e. one
with high bias) into a stronger one. A deeper analysis of this framework in our context of
extreme randomization could also help in this direction.

Mach Learn () :

Finally, along the line of the model characterization carried out in this paper, further work
towards a theoretical analysis of randomization methods is still needed and could lead to
a better understanding of these methods. For example, while we have shown that uniform
sampling of cut-points leads to multi-linear models, it would be interesting to study the impact
of different randomization schemes (e.g. cut-points drawn from a Gaussian distribution) on
the analytical form of the approximation. Also, a theoretical analysis of the exact effect of
values of K greater than 1 on the approximation and its corresponding kernel is still missing.
Lastly, we have shown that it is possible to exploit problem symmetries to justify particular
randomization schemes. Along this idea, a deeper theoretical analysis could also help to
take advantage of a priori knowledge (e.g. invariances or symmetries) in designing ad hoc
methods for specific classes of problems.

Appendix

A. Pseudo-code of the complete Extra-Trees algorithm and score measures

The complete Extra-Trees algorithm is described in Table 6, together with the node splitting
procedures for both numerical and categorical attributes.

Our score measure in classification is a particular normalization of the information gain.
For a sample S and a split s, this measure is given by:

ScoreC (s, S) = 2I s
c (S)

Hs(S) + Hc(S)
,

where Hc(S) is the (log) entropy of the classification in S, Hs(S) is the split entropy (also
called split information by Quinlan (1986)), and I s

c (S) is the mutual information of the
split outcome and the classification. With respect to Quinlan’s gain ratio, this normalization,
proposed by Wehenkel and Pavella (1991), has the advantage of being symmetric in c and
s and it also further mitigates the “end-cut” preference of this latter measure (Wehenkel,
1998). For a discussion of entropy based score measures and normalization, the interested
reader can refer to (Wehenkel, 1996).

In regression, we use the relative variance reduction. If Sl and Sr denote the two subsets
of cases from S corresponding to the two outcomes of a split s, then the score is defined as
follows:

ScoreR(s, S) =
var{y|S} − |Sl |

|S| var{y|Sl} − |Sr |
|S| var{y|Sr }

var{y|S} ,

where var{y | S} is the variance of the output y in the sample S.

B. Description of datasets

The experiments are conducted on 12 classification and 12 regression problems which are
summarized in Table 7. Most datasets are available in the UCI Machine Learning Repository
(Blake and Merz, 1998). Friedman1, Two-Norm, and Ring-Norm are three artificial prob-
lems introduced respectively in (Friedman, 1991) and (Breiman, 1996a). Pumadyn, Hwang,

Mach Learn () :

Table 6 Pseudo-code of the Extra-Trees algorithm

Build an extra tree ensemble(S).
Input: a training set S.
Output: a tree ensemble T = {t1,. . .,tM}.
– For i=1 to M

• Generate a tree: ti= Build an extra tree(S);
– Return T .

Build an extra tree(S).
Input: a training set S.
Output: a tree t.
– Return a leaf labeled by class frequencies (or average output, in regression) in S if

(i) |S| < nmin, or
(ii) all candidate attributes are constant in S, or
(iii) the output variable is constant in S

– Otherwise:
1. Select randomly K attributes, {a1,...,aK}, without replacement, among all (non constant in S)

candidate attributes;
2. Generate K splits {s1, . . . , sK }, where si = Pick a random split(S, ai), ∀i = 1, . . . , K ;
3. Select a split s∗ such that Score(s∗, S) = maxi=1,...,K Score(si , S);
4. Split S into subsets Sl and Sr according to the test s∗;
5. Build tl = Build an extra tree(Sl) and tr = Build an extra tree(Sr) from these subsets;
6. Create a node with the split s∗, attach tl and tr as left and right subtrees of this node and return the
resulting tree t.

Pick a random split(S,a)
Input: a training set S and an attribute a.
Output: a split.
– If the attribute a is numerical:

• Compute the maximal and minimal value of a in S, denoted respectively by aS
min and aS

max;
• Draw a cut-point ac uniformly in [aS

min, aS
max];

• Return the split [a < ac].
– If the attribute a is categorical (denote by A its set of possible values):

• Compute AS the subset of A of values of a that appear in S;
• Randomly draw a proper non empty subset A1 of AS and a subset A2 of A\AS ;
• Return the split [a ∈ A1 ∪ A2].

Bank, and Census come from the DELVE repository of data16 and Ailerons, Elevators,
and Poletelecomm are taken from (Torgo, 1999).17 Notice that the last column of Table 7
provides the normalizing factors that we have used to display mean square-errors for the
regression problems. Notice also that the datasets marked with a star correspond to problems
where either the learning sample or the test sample contain a small number of observa-
tions (≤ 300). For these, our protocol consists of running 50 experiments corresponding to
50 random LS/TS splits, instead of only 10.

To give some insight into the range of problems considered, we give a few indications
about the performance of various learning methods and/or intrinsic properties of the datasets.
To this end, we discuss separately regression and classification problems.

16 http://www.cs.utoronto.ca/∼delve.
17 http://www.liacc.up.pt/∼ltorgo.

Mach Learn () :

Table 7 Datasets summaries

Classification problems Regression problems
Dataset Atts Class LS size TS size Dataset Atts LS size TS size Err×

Waveform� 21 3 300 4700 Friedman1� 10 300 9700 1
Two-Norm� 20 2 300 9700 Housing� 13 455 51 1
Ring-Norm� 20 2 300 9700 Hwang-f5 2 2000 11600 103

Vehicle� 18 4 761 85 Hwang-f5n 2 2000 11600 102

Vowel� 10 11 891 99 Pumadyn-32fh 32 2000 6291 104

Segment� 19 7 2079 231 Pumadyn-32nm 32 2000 6291 105

Spambase 57 2 3221 1380 Abalone 8 3133 1044 1
Satellite 36 6 4435 2000 Ailerons 40 5000 8750 108

Pendigits 16 10 7494 3498 Elevators 18 5000 11559 106

Dig44 16 10 9000 9000 Poletelecomm 48 5000 10000 10−1

Letter 16 26 10000 10000 Bank-32nh 32 3692 4500 103

Isolet 617 26 6238 1559 Census-16H 16 7784 15000 10−9

Among the 12 classification problems, the first 3 are synthetic ones and the other 9 are
real ones. On two problems, the kNN method yields very good results (Two-Norm and
Vowel, see Table 8), and on two other problems its results are close to those of the tree-
based ensemble methods (Pendigits, and Dig44). On four datasets (Ring-Norm, Spambase,
Segment, and Isolet) the kNN gives very disappointing results. On Waveform, Vehicle,
Satellite, and Letter, it is slightly suboptimal with respect to Extra-Trees. On Ring-Norm and
Vehicle the best performance is obtained with quadratic discriminants. On Two-Norm the
Bayes optimal classifier is linear. On the other problems the best performance published in
the literature is obtained with non-linear multi-layer perceptron type of methods.

Among the 12 regression problems, 9 are synthetic ones and three are real datasets
(Housing, Abalone, Census-16H). On one problem (Bank-32nh), linear regression slightly
outperforms the best tree-based methods, while on three others (Pumadyn-32fh, Abalone,
Ailerons), it performs equally well. On the other hand, it is largely suboptimal on most other
problems. As for kNN, it works well on Hwang-f5n, and to a lesser extent on Census-16H.
Hwang, Pumadyn, Bank, and Census are three families of problems specifically chosen in the
DELVE project to evaluate regression methods. Hwang-f5 and Hwang-f5n are respectively
a noise free and a noisy variant of the same two-dimensional non linear problem. By
construction, Pumadyn-32fh is a fairly linear problem with high noise while Pumadyn-32nm
is a highly non linear problem with medium noise. Bank-32nh is a highly noisy problem and
Census-16H is defined in DELVE as a highly difficult problem.

C. Corrected t-test

In each run of random sub-sampling, the data set is divided into a learning sample of a given
size nL and a test sample of size nT . The learning algorithm is run on the learning sample and
its error is estimated on the test sample. The process is repeated Ns times and the resulting
errors are averaged. Let ei

A and ei
B denote the errors of two methods A and B in the ith run

(1 ≤ i ≤ Ns) of random sub-sampling and let di denote the difference ei
A − ei

B . The statistic
corresponding to the t-test is:

t = µd√
σ 2

d
Ns

, (16)

Mach Learn () :

where

µd =
∑Ns

i=1 di

Ns
and σ 2

d =
∑Ns

i=1(di − µd)2

Ns − 1
(17)

Under the null hypothesis stating that A and B are equivalent and assuming that the differences
di are independent, t follows a student distribution with Ns−1 degrees of freedom. Under
re-sampling, the hypothesis of independence is clearly violated as the different learning and
test samples partially overlap. Nadeau and Bengio (2003) have proposed a correction to this
t-test that takes into account this overlapping. With the same notations, the corrected statistic
is the following:

tcorr = µd√
(1

Ns
+ nT

nL
)σ 2

d

, (18)

This statistic is also assumed to follow a student distribution with Ns−1 degrees of freedom.
Experiments in (Nadeau and Bengio, 2003) show that this test improves the type I error with
respect to the standard t-test. Note that Nadeau and Bengio (2003) suggest to use a value of
nL 5 to 10 times larger than nT .

D. Detailed results of empirical study

Table 8 gives average errors of the different learning algorithms compared in this paper as
they were obtained with the protocol described in Section 2.2.3. In classification problems
these numbers refer to error rates in percent, whereas in regression problems they refer to
(normalized) mean square-errors.

To make the comparison easier, we provide in the first column of Table 8 the standard
deviations of the error rates over the different LS/TS splits, as obtained for each problem
with the Extra-Trees algorithm with default settings (column named ETd). Notice that these
standard deviations are also indicative of those of all the other tree-based methods except ST
and TB. The standard deviations of the errors of the single trees are at least twice as large
on all problems, and this is also the case for Tree Bagging on classification problems. On
regression problems, however, the standard deviation of the errors of Tree Bagging is close
to that of the other ensemble methods. The five following columns give the results obtained
by the reference methods (single unpruned and pruned CART trees, Tree Bagging, Random
Subspace and Random Forests with optimal value of K). The subsequent columns provide
error rates for the Extra-Trees with different ways of adjusting the parameter K: first
K = * (K is adjusted optimally on the average test set error rates), then
K = cv (it is adjusted for each LS/TS split by 10-fold cross-validation inter-
nal to the learning sample), then K = d (K fixed a priori according to the de-
fault setting, i.e., d = √

n in classification problems, and d = n in regression
problems), then a version denoted ETd

B , where K = d is combined with boot-
strap resampling of the training set, and finally the totally randomized version
(K = 1). For the classification problems we also provide the results for the value of K
= n. For regression problems this value is not explicitly given since it is equal to the default
value of K = d. Instead, we provide the mean square error provided by a linear regression
method for these latter problems (column LR). Finally, the last column provides the results
obtained with the k-nearest neighbor method on these datasets; as suggested by the notation

Ta
bl

e
8

E
rr

or
ra

te
s

of
al

lm
et

ho
ds

C
la

ss
ifi

ca
tio

n
pr

ob
le

m
s

D
at

as
et

σ
E

T
d

ST
PS

T
T

B
R

S∗
R

F∗
E

T
∗

E
T

cv
E

T
d

E
T

d B
E

T
1

E
T

n
kN

N
∗

W
av

ef
or

m
0.

70
29

.1
7

28
.7

6
19

.4
1

17
.4

5
16

.9
7

16
.6

0
16

.8
4

16
.6

1
16

.5
9

18
.0

2
17

.7
7

18
.3

5
Tw

o-
N

or
m

0.
27

21
.5

3
22

.3
1

6.
97

3.
76

3.
54

3.
15

3.
52

3.
53

3.
47

3.
15

5.
14

2.
78

R
in

g-
N

or
m

0.
38

16
.3

1
15

.4
0

8.
12

4.
57

3.
64

3.
27

3.
55

3.
27

3.
54

5.
39

5.
53

36
.2

2
V

eh
ic

le
4.

71
26

.8
0

28
.0

5
25

.1
5

24
.1

6
24

.7
3

24
.0

2
24

.4
7

26
.0

0
25

.7
2

27
.2

2
24

.0
9

28
.0

9
V

ow
el

1.
33

20
.6

3
20

.7
1

7.
35

2.
73

3.
43

1.
47

1.
47

1.
74

2.
28

2.
22

2.
14

1.
21

Se
gm

en
t

0.
96

3.
24

3.
35

2.
20

1.
72

1.
83

1.
40

1.
34

1.
77

2.
00

2.
57

1.
48

3.
54

Sp
am

ba
se

0.
60

8.
33

7.
36

5.
73

4.
10

4.
54

4.
15

4.
41

4.
17

4.
36

4.
64

4.
38

9.
48

Sa
te

lli
te

0.
49

14
.6

3
13

.5
2

9.
56

8.
14

8.
45

7.
96

8.
12

8.
43

8.
97

9.
31

8.
18

9.
37

Pe
nd

ig
its

0.
19

3.
91

3.
89

1.
74

0.
90

1.
02

0.
60

0.
63

0.
67

0.
77

0.
96

0.
61

0.
63

D
ig

44
0.

24
15

.0
3

13
.9

6
8.

24
4.

87
5.

23
4.

48
4.

47
4.

49
4.

82
5.

40
4.

73
4.

42
L

et
te

r
0.

15
14

.8
4

14
.7

5
7.

44
4.

39
4.

87
3.

75
3.

77
3.

80
4.

24
5.

46
4.

23
6.

33
Is

ol
et

0.
43

26
.4

5
24

.4
3

12
.4

0
7.

85
8.

43
7.

08
7.

19
7.

61
8.

52
19

.6
8

8.
28

15
.4

5

R
eg

re
ss

io
n

pr
ob

le
m

s

D
at

as
et

σ
E

T
d

ST
PS

T
T

B
R

S∗
R

F∗
E

T
∗

E
T

cv
E

T
d

E
T

d B
E

T
1

L
R

kN
N

∗

Fr
ie

dm
an

1
0.

26
11

.7
3

10
.8

4
5.

69
5.

59
5.

55
4.

97
5.

00
4.

97
5.

50
12

.6
0

7.
38

9.
44

H
ou

si
ng

4.
91

19
.9

0
19

.6
3

9.
86

8.
79

9.
72

9.
63

9.
81

9.
68

10
.8

9
17

.3
6

24
.3

8
18

.9
1

H
w

an
g-

f5
0.

14
10

.9
1

10
.9

1
4.

72
10

.2
8

4.
72

1.
62

1.
58

1.
62

2.
89

19
.1

1
81

2.
61

5.
22

H
w

an
g-

f5
n

0.
07

12
.3

2
9.

71
7.

91
9.

37
7.

91
7.

50
7.

51
7.

50
7.

25
8.

87
87

.8
8

7.
56

Pu
m

ad
yn

-3
2f

h
0.

06
8.

27
4.

26
4.

22
4.

28
4.

18
4.

18
4.

19
4.

23
4.

20
6.

26
4.

19
5.

38
Pu

m
ad

yn
-3

2n
m

0.
08

13
.4

1
9.

06
6.

77
7.

59
6.

75
6.

28
6.

29
6.

28
6.

72
84

.3
3

72
.7

5
76

.8
9

A
ba

lo
ne

0.
31

8.
55

5.
61

4.
71

4.
69

4.
57

4.
61

4.
62

4.
67

4.
59

4.
76

4.
93

4.
90

A
ile

ro
ns

0.
06

5.
53

4.
21

2.
88

2.
97

2.
85

2.
93

2.
93

2.
93

2.
94

6.
03

3.
07

4.
69

E
le

va
to

rs
0.

36
19

.4
9

15
.8

6
9.

42
9.

45
9.

36
7.

99
8.

01
8.

03
8.

86
16

.6
2

8.
43

16
.5

3
Po

le
te

le
co

m
m

0.
25

6.
90

6.
90

3.
41

2.
90

3.
24

2.
87

2.
91

2.
95

3.
81

26
.0

6
92

.9
8

11
.8

4
B

an
k-

32
nh

0.
22

14
.4

4
9.

00
7.

46
7.

41
7.

35
7.

21
7.

24
7.

27
7.

29
12

.3
3

6.
96

10
.2

2
C

en
su

s-
16

H
0.

04
2.

20
1.

82
1.

15
1.

10
1.

12
1.

15
1.

16
1.

15
1.

20
1.

50
2.

09
1.

46

Mach Learn () :

kNN*, the column reports the average error corresponding to the best test set error value of k
for each problem. The kNN method uses an euclidian metric over attributes rescaled by the
inverse of their standard deviation.

The comparison of the accuracies of ETd with those of ETd
B confirm that bootstrap

resampling tends to reduce the accuracy of the Extra-Trees method. Indeed, on two of the
classification problems (Letter and Satellite) and 4 regression problems (Housing, Hwang-f5,
Elevators, Poletelecomm) ETd

B is significantly less accurate than ETd, while it is significantly
better only on two regression problems (Hwang-f5n and Abalone).

The reader may wish to compare the results of kNN* with those of the totally randomized
trees (column ET1) which is also a unsupervised kernel-based method. Also the relative per-
formance of this method with respect to the results obtained with ET∗ gives some indications
of the diversity of the problems in terms of the diversity of relative performance of the kNN
method. For example, it is interesting to observe that on Pumadyn-32fh both ET1 and kNN
work quite well, while on Pumadyn-32nm they provide very disappointing results. Actually,
since in this problem 30 attributes among the 32 contain almost no information, this explains
why kNN and ET1, which treat all attributes equally, are so sub-optimal even with respect to
single unpruned trees.

Finally, the comparison of the accuracies of ETd with those obtained by a linear regression
(LR) gives an indication of how competitive ETd is in regression. We observe that the linear
least squares regression method is much less accurate on most problems than ETd. Only
on Bank-32nh it outperforms the other methods, while it provides comparable results on
Pumadyn-32fh, Abalone, and Ailerons.

E. Bias/variance formulation of ensembles of randomized trees

In this appendix we provide the derivations leading to the bias/variance decomposition of
ensembles of randomized trees. We start with the case of regression and then consider
classification problems.

E.1. Bias/variance decomposition of the square-error for regression problems

Before considering randomized methods, we first recall the standard derivation of the
bias/variance decomposition of the square-error for deterministic learning algorithms.

E.1.1. Deterministic learning algorithms. A deterministic learning algorithm can be viewed
as a function mapping a learning sample into a model. We denote the prediction of such a
model at a point x of the input space by f (x ; L S).18 Assuming a random sampling scheme
generating learning samples of fixed size N, this prediction is a random variable, and so is its
average error over the input space. We study the average value of this quantity defined by:

EL S{Err (f (·; L S))} �
= EL S{EX,Y {L(Y, f (X ; L S))}}
= EX {EL S{EY |X {L(Y, f (X ; L S))}}} (19)

= EX {EL S{Err (f (X ; L S))}},

18 In this appendix we use upper case letters to denote random variables and lower case letters to refer to their
realizations.

Mach Learn () :

where L(. , .) is the loss function and where Err (f (X ; L S)) denotes the expected loss at
point X and Err (f (·; L S)) its expectation over the input space. If L(y, ŷ) = (y − ŷ)2, the
error locally decomposes into (see, e.g., Geman et. al., 1992; Hastie et al., 2001):

EL S{Err (f (x ; L S))} = σ 2
R(x) + bias2

R(x) + varR(x), (20)

where

σ 2
R(x)

�= EY |x {(Y − fB(x))2}, (21)

bias2
R(x)

�= (fB(x) − f (x))2, (22)

varR(x)
�= EL S{(f (x ; L S) − f̄ (x))2} (23)

with

fB(x)
�= arg min

y
EY |x {(Y − y)2} = EY |x {Y } (24)

f̄ (x)
�= EL S{ f (x ; L S)}. (25)

The function fB(·) is called the Bayes (optimal) model. By definition the Bayes model
minimizes the average error defined by Eq. (19), and in the case of a squared loss function it
is equal to the conditional expectation of Y given X = x . The first term of the decomposition
(20) is the local error of this model. It is called the residual (squared) error, σ 2

R(x). It provides a
theoretical lower bound of the error which is independent of the learning algorithm. Thus the
(local) sub-optimality of a particular learning algorithm is composed of two (non negative)
terms:

– the (squared) bias, bias2
R(x), measuring the discrepancy between the Bayes model fB(x)

and the average model, f̄ (x).
– the variance, varR(x), measuring the variability of the predictions (around the average

model) with respect to the learning sample randomness.

These local quantities can be “globalized” by averaging them over the input distribution.

E.1.2. Randomized learning algorithms. We use the following terminology:

– “Original algorithm” denotes any given automatic learning algorithm (we assume, without
any limitation, that this algorithm is deterministic). A model returned by this algorithm
for some learning sample ls will be denoted by f(·;ls).

– “Randomized algorithm” denotes the randomized version of the original algorithm, ac-
cording to some perturbation technique. We formalize this by introducing an additional
random variable ε which summarizes the random perturbation scheme, and denote by ε a
value of this variable and accordingly by fr(·;ls,ε) a particular model generated by a call
to the randomized algorithm.

– “Averaged algorithm” denotes the algorithm producing models built by aggregating M
different models obtained with the randomized algorithm. An averaged model will be
denoted by faM (·; ls, εM). Its predictions are computed as:

faM (x ; ls, εM) = 1

M

M∑

i=1

fr (x ; ls, εi). (26)

Mach Learn () :

Let us analyze the bias and variance terms of the randomized and averaged algorithms and
relate them to bias and variance of the original algorithm.

E.1.2.1. Randomized algorithm. Because the randomized algorithm depends on a second
random variable ε, its average square-error and its bias/variance decomposition becomes:

EL S,ε{Err (fr (x ; L S, ε))} = σ 2
R(x) + (fB(x) − f r (x))2 + varL S,ε{ fr (x ; L S, ε)}, (27)

where:

f r (x)
�= EL S,ε{ fr (x ; L S, ε)} (28)

varL S,ε{ fr (x ; L S, ε)} �= EL S,ε{(fr (x ; L S, ε) − f r (x))2}. (29)

The variance term (29) may be further decomposed into two (positive) terms:

varL S,ε{ fr (x ; L S, ε)} = varL S{Eε|L S{ fr (x ; L S, ε)}} + EL S{varε|L S{ fr (x ; L S, ε)}}. (30)

The first term is the variance with respect to the learning set randomness of the average
prediction according to ε. It measures the dependence of the model on the learning sample,
independently of ε. The second term is the expectation over all learning sets of the variance
of the prediction with respect to ε. It measures the strength of the randomization ε.

E.1.2.2. Averaged algorithm. Assuming that the εi are independently drawn from the
same distribution P(ε|LS), the average model of the averaged algorithm is nothing but the
average model of the randomized algorithm:

f aM (x) = EL S,εM { faM (x ; L S, εM)} = 1

M

M∑

i=1

EL S,εi { fr (x ; L S, εi)} = f r (x). (31)

So, its bias is equal to the bias of the randomized algorithm. On the other hand, under the
same assumptions it can be shown that its variance satisfies:

varL S,εM { faM (x ; L S, εM)} = varL S{Eε|L S{ fr (x ; L S, ε)}} + EL S{varε|L S{ fr (x ; L S, ε)}}
M

.

(32)

So, averaging over M values of ε reduces the second part of the variance of the randomized
algorithm by a factor M and leaves the remaining parts of the average square-error unchanged.
This implies that the larger the number of ensemble terms, the smaller the average square-
error of the averaged algorithm.

E.1.2.3. The averaged vs the original algorithm. Figure 11 shows the evolution of bias
and variance from the original algorithm to the averaged algorithm. Asymptotically, with

Mach Learn () :

Fig. 11 Expected evolution of bias and variance by randomization and averaging.

respect to M, the whole process of randomization and averaging decreases the variance with
respect to our original algorithm if:

varL S{Eε|L S{ fr (x ; L S, ε)}} < varL S{ f (x ; L S)}, (33)

namely, if the randomization cancels part of the variance of the original algorithm.
This condition is easy to satisfy. However, to compare the averaged algorithm with the

original algorithm, we need also to take into account their biases. Indeed, in general,

f aM (x) = f r (x) �= f (x) (34)

and hence bias could possibly be increased by the randomization. Actually, when the original
learning algorithm explicitly tries to minimize empirical risk, it is likely that the randomiza-
tion will disturb the algorithm in this goal. Consequently, the averaged algorithm is likely to
have higher bias than the original one. It thus appears that in most randomization methods
there is a bias/variance tradeoff controlled by the randomization strength:

– the stronger the randomization, the lesser the dependence of the randomized models on
the learning sample and the smaller the variance of the averaged algorithm;

– the stronger the randomization, the lesser the dependence of output predictions on the
input attributes and the higher bias of both the randomized and the averaged algorithms.

Note that the increase of variance resulting from the second term of (30) does not influence
the tradeoff since this term is the one which is canceled by averaging. Nevertheless, larger
values of this term will imply slower convergence with respect to the number M of ensemble
terms, and thus lead to higher computational requirements in practice.

E.2. Bias/variance decompositions for classification problems

Several bias/variance decompositions have been proposed in the literature for the average
error rate. They all try to mimic the main properties of the decomposition of the average
square-error (see for example Geurts, 2002, or James, 2003, for a review of several decom-
positions). However, none of them is fully satisfactory. The problem in classification is that a
decrease of the variability of the predictions at some point may actually increase the error (if
the predictions are wrong in average). The consequence when studying randomization meth-
ods is that, unlike the square-error, the error rate of the averaged algorithm may be greater
than the error rate of the randomized algorithm. So, it is very difficult to study randomization
methods by trying to understand directly their effect on the misclassification error (see Bauer
and Kohavi, 1999; Webb, 2000; Valentini and Dietterich, 2004, for empirical bias/variance
analyses of ensemble methods).

Mach Learn () :

However, many classification algorithms, like decision trees, work by first computing a
numerical estimate fc(x ; L S) of P(Y = c|X = x) and then deriving a classification rule by
predicting the class maximizing this estimate:

f (x ; L S) = arg max
c

fc(x ; L S). (35)

We could thus consider classification models as multidimensional regression models and
apply the previous analysis to study the effect of randomization methods. Thus, an approach
to study classification algorithms is to relate the bias and variance terms of these estimates to
the average misclassification error of the resulting classification rule (35). Friedman (1997)
has done this connection in the particular case of a two-class problem and assuming that the
distribution of fc(x ; L S) with respect to LS is close to Gaussian. He shows that the average
misclassification error at some point x may be written as:

EL S{Err (f (x ; L S))} = 1 − P(fB(x)|x)

+ �

(
EL S{ f fB (x)(x ; L S)} − 0.5

varL S{ f fB (x)(x ; L S)}
)

(2P(fB(x)|x) − 1), (36)

where fB(·) is the Bayes optimal classifier and �(·) is the upper tail of the standard normal
distribution. According to the sign of the numerator in (36) we have:

– When a majority of models vote in the same way as the Bayes classifier, a decrease of
variance will decrease the error.

– Conversely, when a majority of models vote wrongly, a decrease of variance will increase
the error.

Another important conclusion that can be drawn from (36) is that, whatever the regression
bias on the approximation of fc(x ; L S), the classification error can be driven to its minimum
value by reducing solely the variance, under the assumption that a majority of models are
right. In other words, perfect classification rules can be induced from very bad (rather biased,
but of small variance) probability estimators.

This discussion shows that where the average probability estimates of the randomized
algorithm are consistent with the Bayes optimal decision rule, the reduction of variance ob-
tained by the averaged algorithm will lead to a reduction of the average error rate. Conversely,
when this is not the case, the averaged algorithm will be worse than the randomized one.
Because of the non additive interaction between bias and variance of probability estimates
and the average error rate, the best tradeoff in classification will not correspond to the best
tradeoff in terms of the average square-error of probability estimates. Actually, since from
Eq. (36) a high bias of probability estimates does not prevent a low misclassification error if
the variance is low, we may expect that the best tradeoff in terms of misclassification error
will correspond to a lower variance and hence a higher randomization level than the best
tradeoff in terms of the square-error.

F. Geometrical characterization of the Extra-Trees kernel

In this appendix, we show that the Extra-Trees kernel is a continuous piecewise multi-linear
function of its two arguments when the number of trees grows to infinity. The developments
follow from an adaptation of the proofs given in (Zhao, 2000).

Mach Learn () :

Let us consider a learning sample of size N

lsN = {(xi , yi) : i = 1, . . . , N },

where each xi = (xi
1, . . . , xi

n) is an attribute vector of dimension n and yi is the corresponding
output value, and let us denote by

(x (1)
j , . . . , x (N)

j)

the sample values of the jth attribute taken by increasing order. Let us denote by I l
k ,

k ∈ {1, . . . , n}, l ∈ {1, . . . , N − 1} the interval]x (l)
k , x (l+1)

k] as well as the random event
corresponding to a split on variable k in this interval at the top node of an Extra-Tree grown
from lsN . Let us further denote by lsl

k,L and lsl
k,R the left and right subsets of lsN resulting

from that split:

lsl
k,L = {(xi , yi) ∈ lsN |xi

k ≤ x (l)
k } and lsl

k,R = {(xi , yi) ∈ lsN |xi
k ≥ x (l+1)

k }

For M→ ∞, the kernel defined by (7) (Section 5.2) becomes the average over the
distribution of Extra-Trees of 0 when x and x′ fall in different leaves in the tree and 1/nl when
x and x′ fall in the same leaf l of size nl.

Given this definition, the following recursive equations allow to compute this kernel:

– If N < nmin

K ∞
T (x, x ′; lsN) = 1

N
; (37)

– Otherwise:

K ∞
T (x, x ′; lsN)

=
n∑

k=1

N−1∑

l=1

P(I l
k).

K ∞
T (x, x ′; lsl

k,L) if xk ≤ x (l)
k ∧ x ′

k ≤ x (l)
k

K ∞
T (x, x ′; lsl

k,R) if xk > x (l+1)
k ∧ x ′

k > x (l+1)
k

x (l+1)
k −x ′

k

x (l+1)
k −x (l)

k

K ∞
T (x, x ′; lsl

k,L) + xk−x (l)
k

x (l+1)
k −x (l)

k

K ∞
T (x, x ′; lsl

k,R)

if x (l)
k < xk < x ′

k ≤ x (l+1)
k

x (l+1)
k −xk

x (l+1)
k −x (l)

k

K ∞
T (x, x ′; lsl

k,L) + x ′
k−x (l)

k

x (l+1)
k −x (l)

k

K ∞
T (x, x ′; lsl

k,R)

if x (l)
k < x ′

k ≤ xk ≤ x (l+1)
k

0 otherwise

(38)

where xk (resp. x ′
k) is the kth component of the attribute vector x (resp. x′).

The sum in (38) is over all possible splitting intervals. The first two choices corre-
spond to the cases when both values xk and x ′

k are outside the interval I l
k but on the

same side with respect to this interval. In this case, the kernel is equal to the ker-
nel computed from the left or the right subset of the learning sample corresponding
to that split. The third and fourth choices correspond to the case when both values

Mach Learn () :

fall in the interval I l
k . For example, in the third situation, the kernel is equal to K ∞

T (x, x ′; lsl
k,L)

when the cut-point is greater than x ′
k , which happens with probability x (l+1)

k −x ′
k

x (l+1)
k −x (l)

k

(since the cut-

point is drawn from a uniform distribution) or equal to K ∞
T (x, x ′; lsl

k,R) when the cut-point

is lower than xk , which happens with probability xk−x (l)
k

x (l+1)
k −x (l)

k

.

In the case of totally randomized trees, the probabilities P(I l
k) are easily computed as:

P(I l
k) = 1

n

x (l+1)
k − x (l)

k

x (N)
k − x (1)

k

. (39)

In the case of Extra-Trees, the probability of splitting in some interval I l
k depends

on the output values of the learning sample cases and also on the score measure
used.

From Eq. (38), it is easy to show that the kernel is continuous with respect to both x and
x′. For a given value of x′ (resp. x), the function K ∞

T (x, x ′; lsN) is also piecewise multi-linear
with respect to x (resp. x′). From (38), it is clear that the function K ∞

T (x, x ′; lsN) is a sum
of products of xk , k ∈ {1, 2, . . . , n}. Furthermore, an attribute can appear at most once in
each product. Indeed, the only terms that make appear explicitely xk are the third and fourth
choice in (38) and if xk and x ′

k are in I l
k , they can only be outside splitting intervals on the

kth attribute appearing in lsl
k,L or lsl

k,R . Hence, K ∞
T (x, x ′; lsl

k,L) and K ∞
T (x, x ′; lsl

k,R) can not
make intervene anymore the kth attribute through the third or fourth choice in subsequent
applications of the recursion (38). Hence, the kernel is piecewise multi-linear with respect
to both x and x′. Hyper-intervals where K ∞

T (x, x ′; lsN) is multi-linear with respect to x (resp.
x′) are delimited by the values of the attributes observed in the learning sample as well as by
the values x′

k (resp. xk), k = {1, . . . , n}.
Since the approximation given by an ensemble of Extra-Trees is written as a weighted sum

of kernels (8), it is also continuous and piecewise multi-linear when M→ ∞. Furthermore,
since kernels in (8) are all centered at learning sample points, hyper-intervals where the
approximation is multi-linear are defined only by attribute values appearing in the learning
sample. Hence, this proves also the form (1) given in Section 5.1 for the approximation
provided by an infinite ensemble of Extra-Trees.

Acknowledgments Damien Ernst and Pierre Geurts gratefully acknowledge the financial support of the
Belgian National Fund of Scientific Research (FNRS).

References

Ali, K., & Pazzani, M. (1996). Error reduction through learning multiple descriptions. Machine Learning,
24:3, 173–206.

Ali, K. (1995). On the link between error correlation and error reduction in decision tree ensembles. Technical
report, Department of Information and Computer Science, University of California, Irvine.

Bauer, E., & Kohavi., R. (1999). An empirical comparison of voting classification algorithms: bagging,
boosting, and variants. Machine Learning, 36, 105–139.

Blake, C., & Merz, C.(1998). UCI repository of machine learning databases. http://www.
ics.uci.edu/∼mlearn/MLRepository.html.

Breiman, L., Friedman, J., Olsen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth
International.

Breiman, L. (1996a). Arcing classifiers. Technical report, University of California, Department of Statistics.
Breiman, L. (1996b). Bagging predictors. Machine Learning, 24:2, 123–140.

Mach Learn () :

Breiman, L. (2000a). Randomizing outputs to increase prediction accuracy. Machine Learning, 40:3, 229–242.
Breiman, L. (2000b). Some infinity theory for predictor ensembles. Technical Report 579, University of

California, Department of Statistics.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Buntine, W., & Niblett, T. (1992), A further comparison of splitting rules for decision-tree induction. Machine

Learning, 8, 75–85.
Buntine, W., & Weigend, A. (1991). Bayesian back-propagation. Complex Systems, 5, 603–643.
Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2, 63–73.
Cutler, A.,& Guohua, Z. (2001), PERT — Perfect random tree ensembles. Computing Science and Statistics

33.
Dietterich, T., & Kong, E. (1995). Machine learning bias, statistical bias, and statistical variance of decision

tree algorithms. Technical report, Department of Computer Science, Oregon State University.
Dietterich, T. (2000). An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting, and randomization. Machine Learning, 40:2, 139–157.
Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. Journal of

Machine Learning Research, 6, 503–556.
Freund, Y., & Schapire, R. (1995). A decision-theoretic generalization of on-line learning and an application

to boosting. In: Proceedings of the 2nd European Conference on Computational Learning Theory, 23–27.
Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19:1, 1–141.
Friedman, J. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge

Discovery, 1, 55–77.
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemna. Neural

Computation, 4, 1–58.
Geurts, P., Blanco Cuesta A., & Wehenkel, L. (2005a). Segment and combine approach for biological sequence

classification. In: Proceedings of IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, 194–201.

Geurts, P., Fillet,M., de Seny, D., Meuwis, M. -A., Merville, M. -P., & Wehenkel, L. (2005b). Proteomic
mass spectra classification using decision tree based ensemble methods. Bioinformatics, 21:14, 3138–
3145.

Geurts, P., & L. Wehenkel. (2000). Investigation and reduction of discretization variance in decision tree
induction. In: Proceedings of the 11th European Conference on Machine Learning, 162–170.

Geurts, P., & Wehenkel, L. (2005). Segment and combine approach for non-parametric time-series classifica-
tion. In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery
in Databases. pp. 478–485.

Geurts, P. (2002). Contributions to decision tree induction: bias/variance tradeo. and time series classification.
Ph.D. thesis, University of Liège.

Geurts, P. (2003). Extremely randomized trees. Technical report, University of Liège - Department of Electrical
Engineering and Computer Science.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference,
and prediction. Springer.

Herbrich, R., Graepel, T., & Campbell, C. (2001). Bayes point machines. Journal of Machine Learning
Research, 1, 241–279.

Ho, T. (1998). The Random subspace method for constructing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20:8, 832–844.

James, G. (2003). Variance and bias for generalized loss functions. Machine Learning, 51, 115–135.
Kamath, C., Cantu-Paz, E., & Littau, D. (2002). Approximate splitting for ensembles of trees using histograms.

In: Proceedings of the 2nd SIAM International Conference on Data mining.
Kleinberg, E. (1990). Stochastic discrimination. Annals of Mathematics and Artificial Intelligence 1, 207–239.
Lin, Y., & Jeon, Y. (2002). Random forests and adaptive nearest neighbors. Technical Report 1055, University

of Wisconsin, Department of Statistics.
Marée, R., Geurts, P., Piater, J., & Wehenkel, L. (2004). A generic approach for image classsification based

on decision tree ensembles and local sub-windows. In: Proceedings of the 6th Asian Conference on
Computer Vision, 2, 860–865.

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. Machine
Learning, 3, 319–342.

Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52:3, 239–281.
Quinlan, J. (1986). C4.5: Programs for machine learning. Morgan Kaufmann (San Mateo).
Torgo, L. (1999). Inductive learning of tree-based regression models. Ph.D. thesis, University of Porto.
Valentini, G., & Dietterich, T. (2004). Bias-variance analysis of support vector machines for the development

of SVM-based ensemble methods. Journal of Machine Learning Research, 5, 725–775.

Mach Learn () :

Webb, G., & Zheng, Z. (2004). Multi-strategy ensemble learning: reducing error by combining ensemble
learning techniques. IEEE Transactions on Knowledge and Data Engineering, 16:8, 980–991.

Webb, G. (2000). Multiboosting: a technique for combining boosting and wagging. Machine Learning, 40:2,
159–196.

Wehenkel, L., & Pavella, M. (1991). Decision trees and transient stability of electric power systems. Auto-
matica, 27:1, 115–134.

Wehenkel, L. (1996). On uncertainty measures used for decision tree induction. In: Proceedings of Information
Processing and Management of Uncertainty in Knowledge Based Systems, 413–418.

Wehenkel, L. (1997). Discretization of continuous attributes for supervised learning: variance evaluation and
variance reduction. In: Proceedings of the International Fuzzy Systems Association World Congress,
381–388.

Wehenkel, L. (1998). Automatic Learning Techniques in Power Systems. Boston: Kluwer Academic.
Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241–259.
Zhao, G. (2000). A new perspective on classification. Ph.D. thesis, Utah State University, Department of

Mathematics and Statistics.
Zheng, Z., & Webb, G. (1998). Stochastic attribute selection committees. In: Proceedings of the 11h Australian

Joint Conference on Artificial Intelligence, 321–332.

